
STEROIDS. IX¹. FACILE INVERSION OF UNHINDERED STEROL CONFIGURATION

Ajay K. Bose, Bansi Lal, W.A. Hoffman 111, and M.S. Manhas

Department of Chemistry and Chemical Engineering Stevens Institute of Technology Hoboken, New Jersey 07030

(Received in USA 1 February 1973; received in UK for publication 26 March 1973)

An important functional group in steroids is the hydroxy group the replacement of which in a stereospecific fashion generally requires a series of reactions. For example, the conversion of 5α -cholestan- 3β -ol (1) to 5α -cholestan- 3α -ol benzoate (2) by known methods would involve tosylation, inversion with saponification² and reesterification⁷ (Scheme A).

We have prepared (2) in one step from (1) using an adaptation of a published reaction^{4,5}. This method consists in treating at room temperature a mixture of a steroid alcohol, triphenylphosphine, and diethyl azodicarboxylate in tetrahydrofuran solution with an acid such as benzoic acid or formic acid. In a few hours a sterically pure ester is formed in good yield that corresponds to inversion of configuration (see Table). Saponification of the ester then allows easy access to the epimer of the starting alcohol.

We find that steric requirements play an important role for the success of this synthesis. When methyl esters of cholic and deoxycholic acid were treated with formic acid under the standard conditions, esterification occurred only at C-3 with inversion of configuration while the hydroxy groups at C-7 and C-12 were unchanged. On the other hand, 5-androsten-38, 16α -diol was converted to the 3α , 16β -diol dibenzoate. We have also observed that the 20β hydroxy but not the 11β -hydroxy group is affected under these reaction conditions. It should therefore be possible to use this method for selective derivatization of polyhydroxy steroids.

Surprisingly, 5α -cholestan- 3α -ol which is an axial alcohol was not esterified under the usual conditions while the axial hydroxy group of 4-t-butylcyclohexanol was easily formylated. Taking advantage of this observation we were able to react with formic acid a mixture of 3α and 3β -. cholestanol and obtain a product (consisting of the 3α -alcohol and its formate) which could be saponified to the pure 3α -alcohol. A typical experiment is described below.

Methyl_3ß-formyloxy-12a-hydroxycholanate

A solution of methyl desoxycholate (2.03 g, 0.005 mole), triphenyl phosphine (2.62 g, 0.01 mole) and formic acid (0.46 g, 0.01 mole) in dry THF (60 ml) was stirred at room temperature. To this was added dropwise a solution of 1.74 g (0.01 mole) of diethyl azodicarboxylate in 10 ml THF. A moderately exothermic reaction took place. The contents were stirred for 14 hr. Removal of THF under reduced pressure afforded a syrupy product which was chromatographed over a Florisil column. First five fractions (50 ml each) using benzene-hexane mixture (60:40) as the eluant gave 2.1 g (97%) of the title compound⁶, mp 160-161⁰, with satisfactory spectral data.

<u>Acknowledgement</u> The authors wish to thank Miss Martha J. Connolly for technical assistance and Stevens Institute of Technology for support.

+

TABLE +

Configurational inversion of sterols via esters

S.NO	Starting Alcohol	Acid Component	Y: Product	eld %	м.р. с ⁰
1	5α-Cholestan-3β-ol	нсоон	5α -Cholestan- 3α -ol formate	97	110-112 ⁰
2	5∝Cholestan-3β-ol	PhCH ₂ COOH	5_{α} -Cholestan- 3_{α} -ol phenyl-acetate	90	112
3	5α-Cholestan-3β-ol	PhC 00H	5_{α} -Cholestan- 3_{α} -ol benzoate	100	100 ⁷
4	5a-Cholestan-3a-ol	PhC00H	No reaction		
5	4-Androsten-17ß-ol- 3-one	PhC00H	No reaction		
6	5-Androsten-3β,16α-dιol	PhC00H	5-Androsten-3α,16β-dio1 dibenzoate	75	187-190
7	5α-Androstan-3β-o1-17-one	НСООН	3α-Formyloxy-5α-androstan- 17-one	85	179-181 ²
8	Methyl 3α,l2α-dihydroxy- cholanate	нсоон	Methyl 3ß-formyloxy-12α- hydroxycholanate	97	160-161 ⁶
9	Methyl 3α,7α,l2α-tri- hydroxy cholanate	HC00H	Methyl 38-formyloxy-7a,12a dihydroxycholanate	- 75	110-112
10	l6α-Methyl-5α-pregnan-3β- ol-20-one	HCOOH	3α-Formyloxy-16α-methyl-5∝ pregnan-20-one	- 75	148-151

Known compounds were directly compared with literature data. New compounds gave satisfactory spectral and elemental analyses.

Thus, when 5α -cholestan- 3β -ol was treated in the above reaction with benzoic acid, 5α cholestan- 3α -ol benzoate was obtained in nearly quantitative yield. Hydrolysis with methanolic potassium hydroxide gave 5α -cholestan- 3α -ol⁸ which was free from 5α -cholestan- 3β -ol. Formic acid and phenylacetic acid under similar reaction conditions produced the corresponding 3α -esters exclusively as shown by their PMR spectra. Cholesterol was converted to its epimeric benzoate ester using the same reaction conditions; the presence of the homoallylic double bond at C-5 did not affect the progress or the stereochemistry of the reaction. The presence of an ester group did not significantly alter the effectiveness of this method. If a keto group is present it is necessary to add one extra mole of the phosphine: the reaction of 5α -androstan- 3β -ol-17-one with formic acid using two moles of triphenylphosphine gave the 3α -alcohol formate in better than 70% yield without affecting the carbonyl function.

REFERENCES

- Presented at the 164th ACS National Meeting, New York, Aug., 1972. For Part VIII, see A.K. Bose and N. G. Steinberg, J. Org. Chem., 36, 2400(1971).
- 2. F. C. Chang and R. T. Blickenstaff, J. Amer. Chem. Soc., 89, 2906 (1958).
- 3. O. Mitsunobu, M. Wada, and T. Sano, J. Amer. Chem. Soc., 94, 679(1972).
- 4. O. Mitsunobu and M. Eguchi, Bull. Chem. Soc. Jap., 44, 3427(1971).
- 5. 0. Mitsunobu and M. Yamada, Bull. Chem. Soc. Jap., 40, 2380(1967).
- 6. F. C. Chang, N. F. Wood and W. G. Holton, J. Org. Chem., 30, 1718(1965).
- 7. Ch. Tamm and R. Aldrecht, Helv. Chim. Acta., 42, 2177(1959).
- 8. R. P. Linstead, J. Amer. Chem. Soc., 62, 1766(1940).